CHARACTERIZATION OF THE SOLUTIONS OF MULTIOBJECTIVE LINEAR PROGRAMMING WITH A GENERAL DOMINATED CONE

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of Properly Efficient Solutions for Convex Multiobjective Programming with Nondifferentiable vanishing constraints

This paper studies the convex multiobjective optimization problem with vanishing constraints‎. ‎We introduce a new constraint qualification for these problems‎, ‎and then a necessary optimality condition for properly efficient solutions is presented‎. ‎Finally by imposing some assumptions‎, ‎we show that our necessary condition is also sufficient for proper efficiency‎. ‎Our results are formula...

متن کامل

Solving multiobjective linear programming problems using ball center of polytopes

Here‎, ‎we aim to develop a new algorithm for solving a multiobjective linear programming problem‎. ‎The algorithm is to obtain a solution which approximately meets the decision maker's preferences‎. ‎It is proved that the proposed algorithm always converges to a weak efficient solution and at times converges to an efficient solution‎. ‎Numerical examples and a simulation study are used to illu...

متن کامل

Characterization of efficient points of the production possibility set under variable returns to scale in DEA

  We suggest a method for finding the non-dominated points of the production possibility set (PPS) with variable returns to scale (VRS) technology in data envelopment analysis (DEA). We present a multiobjective linear programming (MOLP) problem whose feasible region is the same as the PPS under variable returns to scale for generating non-dominated points. We demonstrate that Pareto solutions o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of informatics and cybernetics

سال: 1996

ISSN: 0286-522X

DOI: 10.5109/13452